239 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Evolution of Voronoi-based Fuzzy Controllers

    Get PDF
    A fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. One of the most successful methods to automate the fuzzy controllers development process are evolutionary algorithms. In this work, we propose a so-called ``approximative'' representation for fuzzy systems, where the antecedent of the rules are determined by a multivariate membership function defined in terms of Voronoi regions. Such representation guarantees the ϵ\epsilon-completeness property and provides a synergistic relation between the rules. An evolutionary algorithm based on this representation can evolve all the components of the fuzzy system, and due to the properties of the representation, the algorithm (1) can benefit from the use of geometric genetic operators, (2) does not need genetic repair algorithms, (3) guarantees the completeness property and (4) can implement previous knowledge in a simple way by using adaptive a priori rules. The proposed representation is evaluated on an obstacle avoidance problem with a simulated mobile robot

    Knowledge representation for culturally competent personal robots: requirements, design principles, implementation, and assessment

    Get PDF
    Culture, intended as the set of beliefs, values, ideas, language, norms and customs which compose a person’s life, is an essential element to know by any robot for personal assistance. Culture, intended as that person’s background, can be an invaluable source of information to drive and speed up the process of discovering and adapting to the person’s habits, preferences and needs. This article discusses the requirements posed by cultural competence on the knowledge management system of a robot. We propose a framework for cultural knowledge representation that relies on (i) a three layer ontology for storing concepts of relevance, culture specific information and statistics, person-specific information and preferences; (ii) an algorithm for the acquisition of person-specific knowledge, which uses culture specific knowledge to drive the search; (iii) a Bayesian Network for speeding up the adaptation to the person by propagating the effects of acquiring one specific information onto interconnected concepts. We have conducted a preliminary evaluation of the framework involving 159 Italian and German volunteers and considering 122 among habits, attitudes and social norms

    Paving the way for culturally competent robots: a position paper

    Get PDF
    Cultural competence is a well known requirement for an effective healthcare, widely investigated in the nursing literature. We claim that personal assistive robots should likewise be culturally competent, aware of general cultural characteristics and of the different forms they take indifferent individuals, and sensitive to cultural differences while perceiving, reasoning, and acting. Drawing inspiration from existing guidelines for culturally competent healthcare and the state-of-the-art in culturally competent robotics, we identify the key robot capabilities which enable culturally competent behaviours and discuss methodologies for their development and evaluation

    Development of a Socially Believable Multi-Robot Solution from Town to Home

    Get PDF
    Technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is that they have to be socially acceptable and believable to the end-users. This paper aimed to present some technological aspects that have been faced to develop the Robot-Era system, a multi-robotic system that is able to act in a socially believable way in the environments daily inhabited by humans, such as urban areas, buildings and homes. In particular, this paper focuses on two services—shopping delivery and garbage collection—showing preliminary results on experiments conducted with 35 elderly people. The analysis adopts an end-user-oriented perspective, considering some of the main attributes of acceptability: usability, attitude, anxiety, trust and quality of life

    A Planner for Ambient Assisted Living: From High-Level Reasoning to Low-Level Robot Execution and Back

    Get PDF
    Robot ecologies are a growing paradigm in which one or several robotic systems are integrated into a smart environment. Robotic ecologies hold great promises for elderly assistance. Planning the activities of these systems, however, is not trivial, and requires consideration of issues like temporal and information dependencies among different parts of the ecology, exogenous actions, and multiple, dynamic goals. We describe a planner able to cope with the above challenges. We show in particular how this planner has been incorporated in closed-loop into a full robotic system that performs daily tasks in support of elderly people. The full robot ecology is deployed in a test apartment inside a real residential building, and it is currently undergoing an extensive user evaluation

    Planning with sensing for a mobile robot

    Full text link

    A cognitive robotic ecology approach to self-configuring and evolving AAL systems

    Get PDF
    Robotic ecologies are systems made out of several robotic devices, including mobile robots, wireless sensors and effectors embedded in everyday environments, where they cooperate to achieve complex tasks. This paper demonstrates how endowing robotic ecologies with information processing algorithms such as perception, learning, planning, and novelty detection can make these systems able to deliver modular, flexible, manageable and dependable Ambient Assisted Living (AAL) solutions. Specifically, we show how the integrated and self-organising cognitive solutions implemented within the EU project RUBICON (Robotic UBIquitous Cognitive Network) can reduce the need of costly pre-programming and maintenance of robotic ecologies. We illustrate how these solutions can be harnessed to (i) deliver a range of assistive services by coordinating the sensing & acting capabilities of heterogeneous devices, (ii) adapt and tune the overall behaviour of the ecology to the preferences and behaviour of its inhabitants, and also (iii) deal with novel events, due to the occurrence of new user's activities and changing user's habits

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    The RACE Project: Robustness by Autonomous Competence Enhancement

    Get PDF
    This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system
    corecore